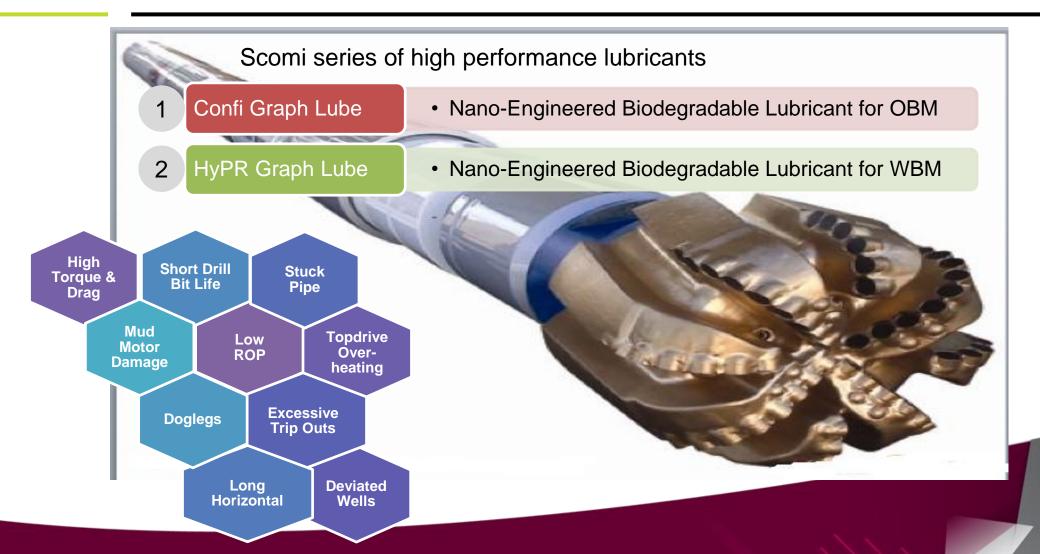

Nano Graphene Engineered Lubricant For Drilling Fluids

Process of Drilling & What Is Drilling Fluids?

Functions of Drilling Fluids (DF)

- To carry cuttings to the surface
- To balance formation pressure
- To cool and lubricate drilling bit and drill string
- To stabilise well bore
- To minimise reservoir damage
- To facilitate cementing and completion

LUBRICANTS CURRENTLY AVAILABLE


- Lubricants for high mechanical friction
- Most liquid lubricants consist of ~70% solvents and 30% active component with and efficiency depends on drilling fluids types, solids content, well geometry, etc
- Solid lubricants (treated graphite, glass beads, copolymer beads, etc) to form slippery layer between borehole and tubular
- Coefficient of Friction (CoF) for typical SBM is <0.16, WBM is 0.2 – 0.6</p>

Drilling Issue & Scomi Solution

Solution to Drilling Challenges

Begins to work the moment it enters the well resulting in exponential cost savings.

Typical Cost Savings

US\$ 100,000- US\$ 400,000

-Faster Drilling (Increased ROP)

- Fewer Trip Outs

- Reduces Disposal Costs

US\$ 500,000- US\$ 1,000,000

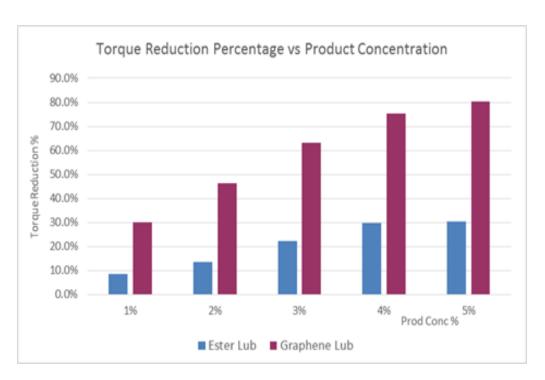
- Prevents Stuck Pipe

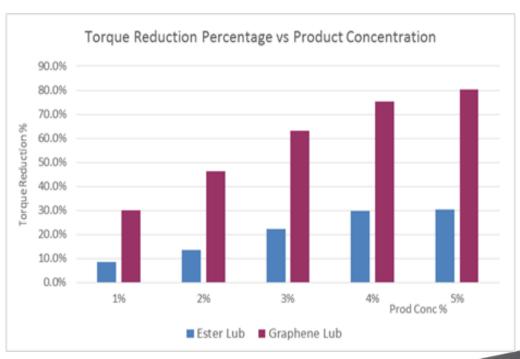
- Deliver Well with Less NPT

- Minimizes Twist Off Risk

US\$ 10,000- US\$ 70,000

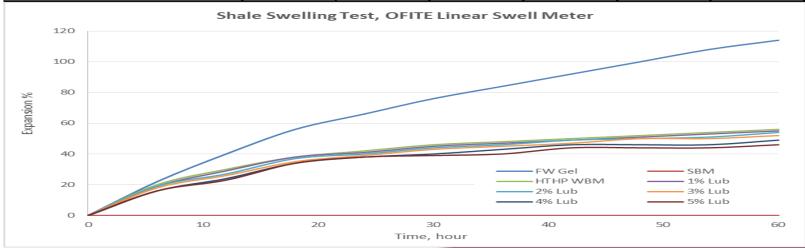
- Extends Drill Bit's Life


- Extends Life of Pumps & Motors


- Reduces Wear & Tear of Drill Strings

- Equipment Maintenance

LABORATORY PERFORMANCE – 10 & 13.5ppg WBM


LABORATORY PERFORMANCE – 13.5ppg WBM

Product	order	time	Ba	se	T1: Gra Lu		T2: T1 + 0	Cement	T3: T1 +		T4: T1 + 0	
Fresh water	1		267.84		267.84		267.84		267.84		267.84	
Sodium Carbonate	2	2	0.20		0.20		0.20		0.20		0.20	
Bentonite	3	5	4.00		4.00		4.00		4.00		4.00	
Sulphonated Copolymer	4	2	1.00		1.00		1.00		1.00		1.00	
Synthetic Resin Lignite	5	2	8.00		8.00		8.00		8.00		8.00	
Synthetic Polymer #1 for Fluids Loss	6	5	1.00		1.00		1.00		1.00		1.00	
Synthetic Polymer #2 for Fluids Loss	7	5	1.75		1.75		1.75		1.75		1.75	
Sodium Hydroxide	8	2	0.15		0.15		0.15		0.15		0.15	
MEA	9	2	2.00		2.00		2.00		2.00		2.00	
API Barite	10	5	261.29		261.29		261.29		261.29		261.29	
Drill Solids	11	5	20.00		20.00		20.00		20.00		20.00	
Lubricant	12	5			14.0mL		14.0mL		14.0mL		14.0mL	
Oxygen Scavenger	13	•	2.00		2.00		2.00		2.00		2.00	
Initial properties/AHR/ASA @ 350F	Spe	≘ C	BHR	AHR	BHR	AHR	BHR	AHR	BHR	AHR	BHR	AHR
Mud density, S.G	13	.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
Rheological properties at 120F				120F		120F		120F		120F		120F
600 RPM				105		110		95		81		103
300 RPM				67		70		57		50		63
200 RPM				49		54		41		40		49
100 RPM				29		35		25		26		32
6 RPM	8-1	L2		5		15		5		11		15
3 RPM				4		14		4		10		14
PV, cP	<4	0		38		40		38		31		40
YP, lb/100 ft ²	15-	28		29		30		19		19		23
Gel 10 sec, lb/100 ft ²	6-1	LO		5		15		5		12		16
Gel 10 min, lb/100 ft ²				16		26		14		19		28
API Fluids Loss, mls	٧	3		2		2		6		7		3
pHmud	9-9	.5		9.6		9.4		11.4		8.9		10.0
Lubricity test												
Mud Lubricity coefficient				0.25		0.07		0.16		0.16		0.07
Torque reduction, %						53.2		34.6		35.5		54.6

LABORATORY PERFORMANCE – 13.5ppg WBM

Product	Base	T1: 1% Graphene Lub	T2: 2% Graphene Lub	T3: 3% Graphene Lub	T4: 4% Graphene Lub	T5:5% Graphene Lub
Fresh water	267.84	267.84	267.84	267.84	267.84	267.84
Sodium Carbonate	0.20	0.20	0.20	0.20	0.20	0.20
Bentonite	4.00	4.00	4.00	4.00	4.00	4.00
Sulphonated Copolymer	1.00	1.00	1.00	1.00	1.00	1.00
Synthetic Resin Lignite	8.00	8.00	8.00	8.00	8.00	8.00
Synthetic Polymer #1 for Fluids Loss	1.00	1.00	1.00	1.00	1.00	1.00
Synthetic Polymer #2 for Fluids Loss	1.75	1.75	1.75	1.75	1.75	1.75
Sodium Hydroxide	0.15	0.15	0.15	0.15	0.15	0.15
MEA	2.00	2.00	2.00	2.00	2.00	2.00
API Barite	261.29	261.29	261.29	261.29	261.29	261.29
Drill Solids	20.00	20.00	20.00	20.00	20.00	20.00
Oxygen Scavenger	2.00	2.00	2.00	2.00	2.00	2.00
Lubricant		3.5 mL	7mL	10.5mL	14mL	17.5mL
Shale Recovery % (Pierre Shale)	%	%	%	%	%	%
Shale Recovery %	59.0	61.0	60.0	69.0	71.0	68.0

LABORATORY PERFORMANCE – Formation Damage

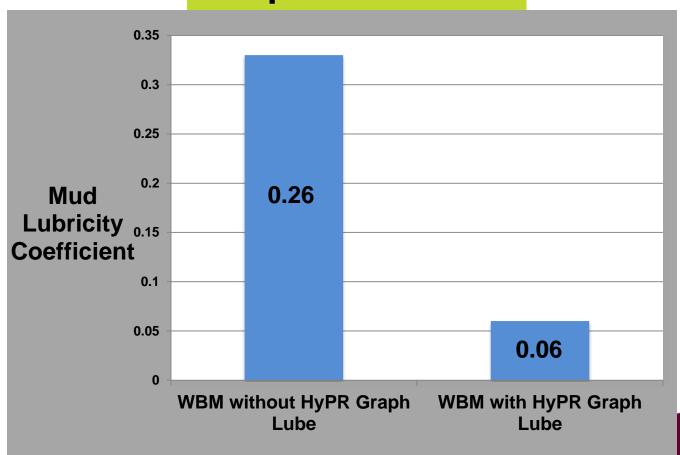

WBM DIF, 11ppg	BASE	T1 - Graphene Lub	T2 - Ester Lub	
Water	261.99	261.99	261.99	
Sodium Formate	117.38	117.38	117.38	
Clarified Starch	6	6	6	
MEA	1	1	1	
Clarified Xanthan Gum	1	1	1.5	
Magnesium oxide	1	1	1	
25 Micron CaCO3	15	15	15	
50 Micron CaCO3	15	15	15	
150 Micron CaCO3	20	20	20	
Graphene Lubricant	-	10.5	-	
Ester Lubricant	-	-	10.5	
Coefficient of friction	0.2266	0.1442	0.1957	
Lubricity Improvement		36.36%	13.64%	
Initial Permeability, mD	1203			
Return Permeability, mD	60	497	591	
Retained Permeability, mD	5	41	49	

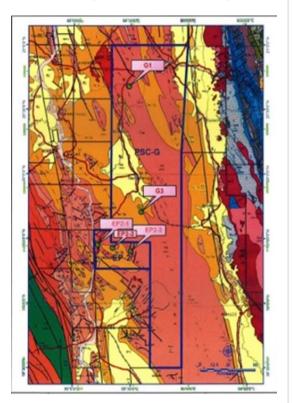
Table 5: Mud formulation, Coefficient of Friction Results, and Retained Permeability Results for the 11 lb/gal Drill-In Fluid, with 3% of lubricants

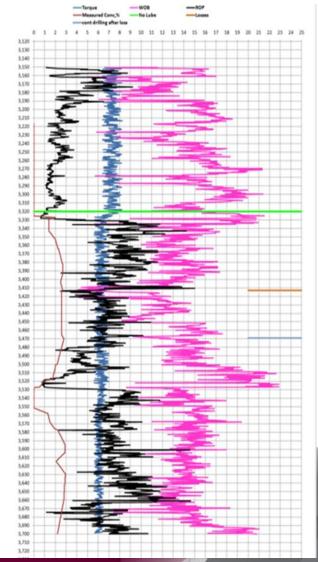
Lubricity Test

17

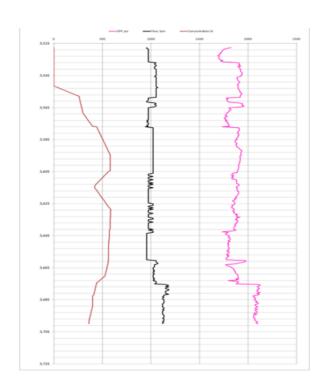
Bearing Friction Test

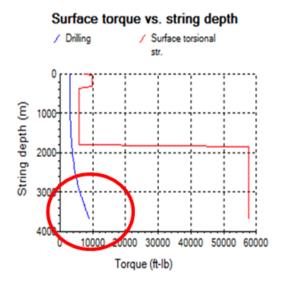
Over 50 times more powerful than conventional lubricants!

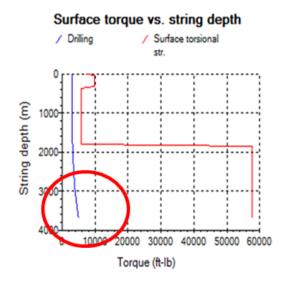

With CONFI Graph Lube @ 200,000 psi

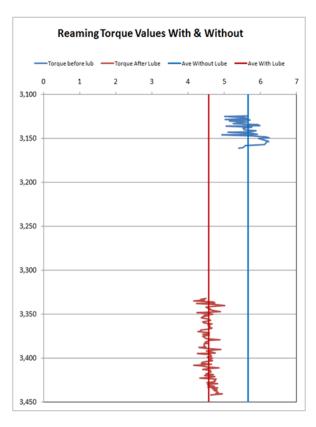

Without Confi Graph Lube @ 4000 psi

FIELD TRIAL PERFORMANCE


- ➤ Trial was conducted in 6" section of an onshore exploration well, where it's hard formation with average 3-4m/hr ROP, 2-3 days of bits' life spans
- With introduction of the product, noticeable reduction in torque, improvement in ROP
- Average lower WOB, but improved ROP







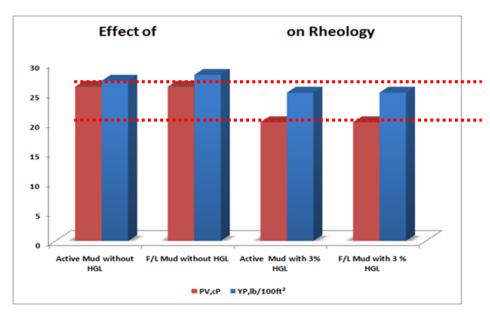
DRILLING PERFORMANCE

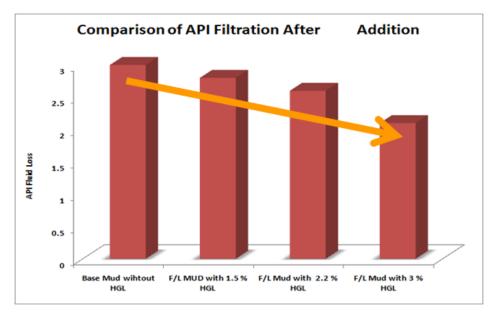
- SPP maintained with addition of the product
- Torque simulation showed 44% torque reduction with CoF changed from 0.21 to 0.08 (similar to SBM)
- Actual average reaming torque reduced 20%

BIT OBSERVATION

- Elongation of bit life span from 3-4 days per bit to >7 days
- No bit balling observed, improved in torque and drag, ROP

Before product addition – bit worn out, solids remained on bit even after washed


After product addition – bit in good shape and no solids remained after washed



After product addition – no balling on BHA, easily to be cleaned

DRILLING FLUIDS PROPERTIES IMPROVEMENT

- > PV reduced 23% & fluids loss reduced 30% after 3% addition of product
- > Fluids loss control polymers concentration reduced 40% compared to previous offset wells
- Graphene enhanced product reduces localized heat generation, elongate life span of polymers at high temperature condition
- Static for >24 hours without deterioration, BHST recorded at 176C (349F), higher than anticipated temperature

FIELD TRIAL PERFORMANCE SUMMARY

- > CoF reduction from 0.21 to 0.08
- > ROP improved from average 3-4 m/hr to 9 m/hr (max recorded 15 m/hr)
- ➤ No solids accretion on the BHA and improve bit life span from average 3-4 days to >7days
- ➤ Torque reduction 44% with CoF reduction, field recorded average reaming torque reduced 20%
- ➤ PV reduction 23%, fluids loss reduction 30%, 40% reduction in fluids loss control polymers concentration
- ➤ WBM treated with 3% of graphene enhanced product had been static for >24 hours, without deterioration at BHST 176C (349F)

Thank You! Questions?

